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The Burr X distribution has been extensively studied by many researchers. It 
has many applications in medical, biological, agriculture and other fields. In 
this paper, a new family of Burr X-type distributions is introduced; the 
univariate Burr X-type distribution and the bivariate Burr X-type 
distribution. The bivariate Burr X-type distribution is constructed based on 
Gaussian copula with univariate Burr X-type distribution as marginals. This 
type distribution is more flexible and provides easier implementation and 
extension to bivariate form. A Gibbs sampler procedure is used to obtain 
Bayesian estimates of the unknown parameters. A simulation study is carried 
out to illustrate the efficiency of the proposed bivariate Burr X-type 
distribution. Finally, the proposed bivariate distribution is applied on real 
data to demonstrate its usefulness for real life applications. 
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1. Introduction 

*Burr type X distribution is a member of the 
family of Burr distributions which was appeared 
since 1942 (Burr, 1942). It is known also as 
generalized Rayleigh distribution. This distribution 
has increasing importance in several areas of 
applications such as lifetime tests, health, 
agriculture, biology, and other sciences. 

In recent years, Burr X distribution has been 
extensively used in medical, biological, agriculture, 
lifetime tests, and other sciences applications. The 
Burr X distribution was first introduced by Burr 
(1942) and later a generalized form of this 
distribution is introduced by Mudholkar and 
Srivastava (1993). Several characteristics and 
inferences of this distribution were studied by 
many researchers, see for example Abd et al. 
(2015), Ali Mousa (2001), Aludaat et al. (2008), 
Jaheen and Al-Matrafi (2002), Kjelsberg (1962), 
Kundu and Raqab (2005) and Raqab (1998), 
among others. The probability density function 
(Pdf) of the Burr type X distribution with shape 
parameter β and scale parameter α is given by 

 

f(t) =
2𝛽𝑡

𝛼2 exp (− (
𝑡

𝛼
)

2
) [1 − exp (− (

𝑡

𝛼
)

2
)]

𝛽−1

,               (1) 

 
where t, α, β >0. 
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Diverse methods have been studied in previous 
research for establishing new multivariate or 
bivariate distributions. Among these, the study of 
Al-Hussaini and Ateya (2005), Johnson et al. 
(2002), Marshall and Olkin (1997) and Walker and 
Stephens (1999). Recently, the copula method has 
received special attention for constructing 
multivariate or bivariate distributions due to its 
simplicity and useful dependency properties. Some 
of these studies combined the mixture and copula 
ideas to establish new family of distributions which 
concluded that the resulting multivariate or 
bivariate distribution is easy to analyze and has a 
full dependence structures. These studies include 
Adham and Walker (2001), AL Dayian et al. (2008), 
Abd Elaal et al. (2016), and Adham et al. (2009).  

According to Adham and Walker (2001) and 
Walker and Stephens (1999), the mixture 
representation for a Pdf of a random variable Ton 
[0,∞) can be written in the following form 
 

f(t) = ∫ f(t|u)
Ω

f(u) du,     for all u ∈ Ω,                               (2) 

 
where u is a non-negtive latent variable that 
follows a gamma distribution with shape 
parameter 2 and scale parameter 1. Then, the 
mixture representation for any lifetime 
distribution can be written as 
 

f(t) = ∫ f(t|u)
Ω

f(u) du,     for all u ∈ Ω,                (3) 

 
where ℎ(t)  and  𝐻(t) are the hazard rate function 
and the cumulative hazard rate function of T, 
respectively. 

The studies of Walker and Stephens (1999), 
Agarwal and Al-Saleh (2001), and Arslan (2005) 
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have suggested type distributions by replacing the 
gamma mixing distribution with lognormal 
distribution which extend more easily to 
multivariate form. In this paper, we will apply the 
mixture and copula on Burr X-type distribution to 
introduce the bivariate Burr X-type distribution.  

Therefore, we replace the gamma mixing 
distribution in (3) by lognormal distribution to 
obtain the Burr X-type distribution. However, the 
normal distribution with mean =µ and variance 
=𝜎2 denoted by 𝑁(𝜇, 𝜎2), will be used for simplicity 
after considering the appropriate transformation. 
Thus, equation (3) can be rewritten as 
 
f(t|u) = h(t) exp(−u) , u > ln(H(t)), u~N(μ, σ2).           (4) 

 
The paper is outlined as follows: Section 2 deals 

with the construction and estimation for the 
unknown parameters of the univariate Burr X-type 
distribution. Section 3 presents the construction of 
the new bivariate Burr X-type distribution. 
Bayesian estimation of the parameters of the 
bivariate Burr X-type is discussed in Section 4. 
Simulation study is carried out in Section 5 to 
illustrate the performance of the proposed 
bivariate Burr X-type distribution. Finally, real data 
application is analyzed in Section 6 to show the 
flexibility of the bivariate Burr X-type distribution.   

2. The univariate Burr X-type distribution 

The hazard rate function (HRF) and the 
cumulative hazard rate function (CHRF) of a 
continues random variable T that follows a Burr X 
distribution are given, respectively, by  
 

h(t) =
2tβ

α2 (1−ω)ωβ−1

1−ωβ
                                                                     (5) 

 

and 
 
H(t) = −ln(1 − ωβ),                       (6) 

 

where ω = 1 − exp (− (
t

α
)

2

), t, α, β > 0. 

The mixture representation for the Burr X-type 
is obtained by substituting (5) and (6) in (4) as 
follows 
 

𝑓(𝑡|𝑢) =
2𝑡𝛽

𝛼2 (1−𝜔)𝜔𝛽−1

1−𝜔𝛽 𝑒𝑥𝑝(−𝑢), 𝑢 > 𝑙𝑛(𝐻(𝑡))                  (7) 

 

Therefore, the Pdf of Burr X-type can be written 
as 
 

f(t) =
2tβ

α2 (1−ω)ωβ−1

1−ωβ exp (
σ2

2
− μ) [1 − Φ (

G−(μ−σ2)

σ
)]         (8) 

 

where t, σ2 > 0, −∞ < 𝜇 < ∞, Φ, is the distribution 
function of the standard normal distribution, and 
𝐺 = 𝑙𝑛(𝐻(𝑡)). 

2.1. Parameters estimation of the univariate Burr 
X-type distribution 

Parameter estimates of the Burr X-type are 
obtained using Bayesian estimation. The Gibbs 

sampler will be used to obtain random variables 
from posterior distributions of the Burr X-type 
distribution, see Adham and Walker (2001), Gilks 
and Wild (1992), and Gilks et al. (1995). 

 
Let 𝑇 = 𝑡1, . . . , 𝑡𝑛 be a random sample from Burr 

X distribution, and 𝑈 = 𝑢1, . . . , 𝑢𝑛 is a random 
sample from 𝑁(𝜇, 𝜎2) distribution. Then, the 
likelihood function can be written as 
 

𝐿(𝛼, 𝛽|𝑇, 𝑈) = (
2𝛽

𝛼2
)

𝑛
𝑒𝑥𝑝 [∑ 𝑙𝑛 (

𝑡𝑖(1−𝜔)𝜔𝛽−1

1−𝜔𝛽
)𝑛

𝑖=1 ] −

[
1

2𝜎2
∑ (𝑢𝑖 − (𝜇 − 𝜎2))

2𝑛
𝑖=1 ]                       (9) 

 
Non-informative priors for the parameter α and 

β are given by  
 

𝜋(𝛼) =
1

𝛼
,        𝜋(𝛽) =

1

𝛽
.                                                        (10) 

 
Then, the posterior distribution is  

 

𝑓(𝛼, 𝛽|𝑇, 𝑈) =
𝛽𝑛−1

𝛼2𝑛+1
𝑒𝑥𝑝 [∑ 𝑙𝑛 (

𝑡𝑖(1−𝜔)𝜔𝛽−1

1−𝜔𝛽
)𝑛

𝑖=1 ] −

[
1

2𝜎2
∑ (𝑢𝑖 − (𝜇 − 𝜎2))

2𝑛
𝑖=1 ].                                                  (11) 

 
It can be seen that the above conditional 

distribution of the parameters is not in closed form 
and we need to apply Monte Carlo integration by 
sampling the full conditional distributions of the 
parameters as follows:  

First: The marginal posterior of 𝑢𝑖 , i=1,…,n 
 

𝑓(𝑢𝑖|𝛼, 𝛽, 𝑡) =
1

2𝜎2
∑ (𝑢𝑖 − (𝜇 − 𝜎2))

2
,𝑛

𝑖=1                         (12) 

 

where 𝑢 > 𝑙𝑛 (−𝑙𝑛(1 − 𝜔𝛽)), which is a left 

truncated normal distribution, see Robert (1995). 
 
Second: The marginal posterior of α 
 

𝑓(𝛼|𝛽, 𝑇, 𝑈) ∝
1

𝛼2𝑛+1
𝑒𝑥𝑝 [∑ 𝑙𝑛 (

𝑡𝑖(1−𝜔)𝜔𝛽−1

1−𝜔𝛽
)𝑛

𝑖=1 ],            (13) 

 

where 𝛼 >
𝑡

√𝑙𝑛((1−exp(−𝑢))1/𝛽−1)

. 

 
Third: The marginal posterior of the parameter 

β  
 

𝑓(𝛽|𝛼, 𝑇, 𝑈) ∝ 𝛽𝑛−1𝑒𝑥𝑝 [∑ 𝑙𝑛 (
𝑡𝑖(1−𝜔)𝜔𝛽−1

1−𝜔𝛽 )𝑛
𝑖=1 ],           (14) 

 

where 𝛽 >
𝑙𝑛(1−exp(−𝑢))

𝑙𝑛(𝜔)
.  

These above marginal posteriors of α and β are 
not in closed form. Therefore, Algorithms 1 and 2 
in Appendices A and B are applied to sample the 
posterior distribution of the parameters α and β, 
respectively. 

3. Bivariate Burr X-type distribution 

The construction of bivariate Burr X-type 
distribution is based on copula and M mixture 
representation, where M denotes the set of 
densities for a random variable T on [0, ∞). 
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Suppose we have two-dimensional random vectors 
𝑇 = (𝑇1, 𝑇2) and 𝑈 = (𝑈1, 𝑈2), where 

𝑈~𝐵𝑉𝑁 (𝜇, Σ) , 𝜇 = (𝜇1, 𝜇2), Σ = ⌊𝜎𝐿𝑗⌋
2𝑥2

 for j=1, 

2, and Ʃ is the variance covariance matrix. 
Assuming that 𝑇1, 𝑇2 are conditionally 

independent given 𝑈1, 𝑈2, the joint conditional pdf 
of 𝑇 on 𝑈 is given by   
 
𝑓(𝑇|𝑈) = ∏ 𝑓(𝑡𝑗|𝑢𝑗)2

𝑗=1 = ∏ ℎ(𝑡𝑗
2
𝑗=1 ) exp(−𝑢𝑗).          (15) 

 
Then, the joint pdf of the bivariate Burr X-type 

based on M mixture representation is 
  

𝑓(𝑇) = ∫ ∫ 𝑓(𝑡𝑗|𝑢𝑗)𝑓(𝑢𝑗)
∞

𝐺2

∞

𝐺1
𝑑𝑢1 𝑑𝑢2  ,            (16) 

 

where Gj=ln(H(tj)), f(tj|uj) is given by (7) and 

f(uj), j = 1,2 is the bivariate normal density 

function, denoted by BVN (μ, Σ). The joint pdf of 𝑇 

cannot be written in closed form except in terms of 
the two-dimensional standard bivariate normal 
distribution function. However, this does not cause 
any problem in examining the distribution. 

4. Parameters estimation of the bivariate Burr X-
type distribution 

The vector of parameters of the bivariate Burr 
X-type, (𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝜌), where ρ is the correlation 
parameter of the bivariate normal distribution is 
estimated using Bayesian method. Considering that 
the prior distribution of the parameters 𝛼𝑗and𝛾𝑗  

are 
 

π(αj) ∝
1

αj
,    π(γj) ∝

1

γj
,   j = 1,2.                                       (17) 

 

And the correlation parameter ρ has a uniform 
prior distribution defined on the interval (-1, 1). 
Therefore, the likelihood function can be rewritten 
as 
 

𝐿 (𝛼, 𝛽|𝑇, 𝑈) =

∏ (
2𝛽𝑗

𝛼𝑗
2 )

𝑛

𝑒𝑥𝑝 [∑ 𝑙𝑛 (
𝑡𝑗𝑖(1−𝜔𝑗)𝜔

𝑗

𝛽𝑗−1

1−𝜔
𝑗

𝛽𝑗
)𝑛

𝑖=1 (1 −2
𝑗=1

𝜌2)−
𝑛

2𝑒𝑥𝑝 (
−1

𝜎2(1−𝜌2)
∑ 𝜉𝑖

𝑛
𝑖=1 )],                                               (18) 

 

where 
 
𝜉𝑖 = (𝑢1𝑖 − 𝜇1)2 − 2𝜌(𝑢1𝑖 − 𝜇1)(𝑢2𝑖 − 𝜇2) +
(𝑢2𝑖 − 𝜇2)2, 𝛼 = (𝛼1, 𝛼2), 𝛽 = (𝛽1, 𝛽2)                              (19) 

 
The joint posterior distribution of the 

parameters given a random sample of size n from 
the bivariate Burr X-type is given by 
 

𝑓 (𝛼, 𝛽, 𝜌|𝑇, 𝑈) =

∏ (
𝛽𝑗

𝛼𝑗
2)

𝑛

𝑒𝑥𝑝 [∑ 𝑙𝑛 (
𝑡𝑗𝑖(1−𝜔𝑗)𝜔

𝑗

𝛽𝑗−1

1−𝜔
𝑗

𝛽𝑗
)𝑛

𝑖=1 (1 −2
𝑗=1

𝜌2)−
𝑛

2𝑒𝑥𝑝 (
−1

𝜎2(1−𝜌2)
∑ 𝜉𝑖

𝑛
𝑖=1 )] .                                              (20) 

 

Then, we sample the following conditional 
distributions:  

First: Sample the marginal posterior of 𝑢𝑗𝑖  from  
 

f(uji|uεi, ti, α, β, ρ)~Normal (μj + ρ(u − με) −

σ2(1 − ρ2), σ2(1 − ρ2)).  

 

This is restricted to the interval 
 

 (ln (−ln [1 − ωj

βj]) , ∞), for ε =1,2, ε ≠ j. 

 

Second: Sample the marginal posterior of 𝛼𝑗  

from 
 

f(αj|αε, βj, ρ, T, U) ∝
1

αj
2n+1 exp [∑ ln (

tji(1−ωj)ω
j

βj−1

1−ω
j

βj
)n

i=1 ],  

                 (21) 

where  𝛼𝑗 >
𝑡𝑗𝑖

√𝑙𝑛((1−exp(−𝑢𝑗𝑖))
1/𝛽𝑗−1)

. Algorithm 1 is 

used to sample this conditional distribution.  
Third: Sample the marginal posterior of 𝛽𝑗  from 

 

𝑓(𝛽𝑗|𝛽𝜀 , 𝛼𝑗 , 𝜌, 𝑇, 𝑈) ∝ 𝛽𝑗
𝑛−1𝑒𝑥𝑝 [∑ 𝑙𝑛 (

𝑡𝑗𝑖(1−𝜔𝑗)𝜔
𝑗

𝛽𝑗−1

1−𝜔
𝑗

𝛽𝑗
)𝑛

𝑖=1 ],   

                     (22) 

where  βj >
ln(1−exp(−uji))

ln(ωj)
. We apply Algorithm 2 to 

sample this full conditional distribution. 
Finally, sample ρ from its posterior distribution 

 

f (ρ|α, β, T, U) = (1 − ρ2)−
n

2exp (
−1

σ2(1−ρ2)
∑ ξi

n
i=1 )         (23) 

      

This full conditional distribution can be 
sampled using metropolis Hasting Algorithm. 

5. Simulation study 

In this Section, simulation study is carried out 
to examine the performance of the Bayesian 
estimation for different sample sizes and 
parameter values for the constructed bivariate 
Burr X-type distribution. The performances of the 
Bayesian estimates are studied mainly with respect 
to the mean squared error (MSE) over 1000 
iterations. Random samples of sizes (n=15, 30, 50) 
observations are generated from the bivariate Burr 
X-type distribution with marginal distributions 
BurrX-type (𝛼1 = 0.3, 𝛽1 = 0.7) and BurrX-
type (𝛼2 = 0.5, 𝛽2 = 1.1) with ρ=0.66. Moreover, 
another random samples of sizes (n=15, 30, 50) 
observations are generated from the bivariate Burr 
X-type distribution with marginal distributions 
BurrX-type(𝛼1 = 2, 𝛽1 = 2.5) and BurrX-
type(𝛼2 = 0.5,  𝛽2 = 1.8) with ρ=0.7 and results of 
the simulation are reported in Tables 1 and 2. 

The predicted observations can be obtained by 
applying the inverse of the conditional distribution 
function of the BurrX -type distribution as  

 

𝑡𝑗𝑘 = 𝛼𝑗𝑘√𝑙𝑛 ((1 − (1 − 𝑒𝑥𝑝 (−
𝑣𝑗𝑘

exp (−𝑢𝑗𝑘)
))

1

𝛽𝑗𝑘

)

−1

),   

           (24) 
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where for j=1,2, v~uniform (0, 1), 𝛼𝑗𝑘, 𝛽𝑗𝑘   are the 

sampled values of 𝛼𝑗  and 𝛽𝑗 , respectively, at 

iteration k of the MCMC run and 𝑢𝑗𝑘  is the jth 

element of a new bivariate vector of the 

observations generated from the bivariate normal 
mixing distribution with correlation parameter 
which is sampled at the kth iteration of the MCMC. 

 
Table 1: Bayesian estimate, Bias, variance, and MSE of the bivariate Burr X-type distribution parameters for ρ=0.66 

𝛼1 = 0.3, 𝛼2 = 0.5, 𝛽1 = 0.7, 𝛽2 = 1.1, 𝜌 = 0.66 
�̂� �̂�2 �̂�1 �̂�2 �̂�1  n 

0.7710 1.1685 0.7979 0.4629 0.3099 Estimate 

15 
0.1110 0.0685 0.0979 0.0369 0.0099 Biase 
0.0008 0.0638 0.0172 0.0004 6.9e-6 Variance 
0.0132 0.0838 0.0269 0.0017 0.0001 MSE 
0.7715 1.0770 0.7787 0.4582 0.3049 Estimate 

30 
0.1115 0.0226 0.0787 0.0417 0.0049 Biase 
0.0010 0.01941 0.0069 0.0002 7.8e-07 Variance 
0.0134 0.01992 0.0131 0.0019 2.5e-05 MSE 
0.7652 1.0646 0.7727 0.45667 0.3029 Estimate 

50 
0.1052 0.0354 0.0727 0.04332 0.0029 Biase 
0.0006 0.0092 0.0037 0.0001 2.0e-07 Variance 
0.0117 0.0104 0.0090 0.001978 9.2e-06 MSE 

 
Table 2: Bayesian estimate, Bias, variance, and MSE of the bivariate Burr X-type distribution parameters for ρ=0.7 

𝛼1 = 2, 𝛼2 = 0.5, 𝛽1 = 2.5, 𝛽2 = 1.8, 𝜌 = 0.7 
�̂� �̂�2 �̂�1 �̂�2 �̂�1  n 

0.7429 1.6068 2.1584 0.5181 2.0651 Estimate 

15 
0.0429 0.1931 0.3415 0.0181 0.0651 Biase 
3.9e-

07 
0.0965 0.1326 2.6e-05 0.0003 Variance 

0.0018 0.1338 0.1326 0.0003 0.0046 MSE 
0.7719 1.5718 2.0700 0.5088 2.0325 Estimate 

 
0.0719 0.2282 0.4299 0.0088 0.0325 Biase 
1.7e-

07 
0.0290 0.0449 2.7e-06 

3.8e-
05 

Variance 

0.0052 0.0811 0.2298 7.9e-05 0.0011 MSE 
0.7768 1.5662 2.0547 0.50513 2.0199 Estimate 

50 
0.0769 0.2338 0.4453 0.0051 0.0199 Biase 
9.5e-

08 
0.0157 0.0250 5.3e-07 

7.9e-
06 

Variance 

0.0059 0.0704 0.2233 2.7e-05 0.0004 MSE 

 
As expected, we observe from the results in 

Table 1 and Table 2 that for all selected values of 
α1, α2 β1, β2 and ρ, the MSE of the estimates α̂1,  α̂2, 
β̂1,  β̂2  and ρ̂   become smaller as the sample size 
increases. That is, the results improve with 
increases in sample size. The bias, variance and 
MSE of the α̂1,  α̂2 are smaller compared to β̂1,  β̂2 
for all sample sizes. It is observed that the value of 
p have minimal effects on the estimate of the other 
parameters. 

6. Data analysis 

The real dataset is taken from the American 
football league and provides two game times of the  
matches played in 1986; the game time to the first 
points scored by kicking the ball between 
goalposts denoted by T1and the game time to the 
first points scored by moving the ball into the end 
zone denoted by T2, for details see Cso rgő and 
Welsh (1989). Since these times are positively 
correlated and their plots are skewed, bivariate 
Burr X-type distribution can be used to model the 
data. Kolmogorov-Smirnov (KS) is conducted on 
the marginal to examine whether the bivariate 
Burr X-type distribution fits the data (Kundu and 
Gupta, 2011). The KS test statistics and p-value for 
𝐓𝟏 are 0.1419 (0.3666) and for 𝐓𝟐 are 0.1525 
(0.2557). Therefore, the bivariate Burr X-type 
distribution provides suitable fit for the bivariate 
data. In addition, Al-Urwi and Baharith (2017) 

showed that the Gaussian copula is appropriate for 
this data and the inversion of Kendall’s tau 
estimated the copula parameter p to be 0.88 which 
can be set as initial value when fitting bivariate 
Burr X-type distribution (Genest et al., 2009). 
Bayesian estimates, standard error (SE), and 
credible intervals of the bivariate Burr X-type 
parameters are reported in Table 3. 

 
Table 3: Bayesian estimates, SE, and the corresponding 

95% credible interval of the bivariate Burr X-type 
distribution parameters 

Parameter estimate SE 
95% Credible Interval 

2.5% 97.5% 
�̂�1 0.0170 0.0065 0.0063 0.0313 
�̂�2 0.0174 0.0052 0.0095 0.0174 
�̂�1 0.2939 0.0255 0.2435 0.3391 

�̂�2 0.2137 0.0187 0.1787 0.2536 
�̂� 0.7127 0.0160 0.6822 0.7413 

7. Conclusion 

In this paper, we propose a family of Burr X-
type distributions as a flexible bivariate lifetime 
distributions which include the univariate Burr X-
type distribution and the bivariate Burr X-type 
distribution. The use of normally distributed latent 
variables has allowed positive and negative 
association. Markov chain Monte Carlo simulation 
is performed to estimate the parameters of the 
proposed univariate and bivariate distributions. 
One real lifetime data is analyzed and the results 
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showed the flexibility of the bivariate Burr X-type 
distribution. 

Appendix A. Algorithm 1 

1. Given a random sample of Tji   =   (T1i , T2i)  ,   i  =

  1, . . . , n from BurrX distribution, and a random 
sample of Uji   =   (U1i , U2i)  ,   i  =   1, . . . , n from 

normal distribution.  

2. Introduce a non-negative latent variable ν𝑗 . The 

joint probability density function of of vj and αj is 

given by  

 

f (αj , ν𝑗)  ∝
1

𝑎𝑗
2𝑛  , αj > Αj, ν𝑗  <

dj

αj
 ,                                          (25) 

where 

𝐴𝑗 =
tji

√ln ((1−exp(−𝑢𝑗𝑖))
1/𝛾𝑗−1)

                                       (26) 

𝑑𝑗 = 𝑒𝑥𝑝 [∑ 𝑙𝑛 (
(𝑡𝑗𝑖(1−𝜔𝑖𝑗)𝜔𝑖𝑗

(𝛾𝑗−1)
)

1−𝜔𝑖𝑗
𝛾𝑗

)𝑛
𝑖=1 ]                    (27) 

𝜔𝑖𝑗 = 1 − exp (− (
𝑡𝑖𝑗

𝛼𝑗
)

2

)                                                         (28) 

 

3. Given a value of the parameter𝛼𝑗 , v is sampled 

from the uniform density on (0,
dj

αj
).  

4. Finally, use the distribution function inverse 
method  to sample 𝛼𝑗  

 

f (αj , ν)  ∝
1

𝑎𝑗
2𝑛  , Αj < αj < Bj, 𝐵𝑗  <

dj

v𝑖𝑗
 ,                         (29) 

αj = [𝐴𝑗
2𝑛+1 + 𝛿(𝐵𝑗

2𝑛+1 − 𝐴𝑗
2𝑛+1)]

1

2𝑛+1,                             (30) 

 

where  𝛿 is sampled from Uniform  1,0 . 

Appendix B. Algorithm 2 

1. Given a random sample of Tji   =   (T1i , T2i)  ,   i  =

  1, . . . , n from BurrX distribution, and a random 
sample of Uji   =   (U1i , U2i)  ,   i  =   1, . . . , n from 

normal distribution.  

2. Introduce a non-negative latent variableν𝑗 . The 

joint probability density function of ν𝑗  and  𝛾𝑗  is 

given by  

f (γj , ν𝑗)  ∝ 𝛾𝑛−2 , γj < Αj, ν𝑗  <  γjd𝑗 ,                                   (31) 

where 

 

𝐴𝑗 =
ln (1−exp (−𝑢)

𝑙𝑛(1−𝑒𝑥𝑝(−(𝑡𝑗𝑖/𝛼𝑗)
2

))
,                                     (32) 

𝑑𝑗 = 𝑒𝑥𝑝 [∑ 𝑙𝑛 (
(𝑡𝑗𝑖(1−𝜔𝑖𝑗)𝜔𝑖𝑗

(𝛾𝑗−1)
)

1−𝜔𝑖𝑗
𝛾𝑗

)𝑛
𝑖=1 ],                      (33) 

𝜔𝑖𝑗 = 1 − exp (− (
𝑡𝑖𝑗

𝛼𝑗
)

2

)                                            (34) 

 

3. Given a value of the parameter 𝛾𝑗, ν𝑗  is sampled 

from the Uniform(0, γjd𝑗). 

 

f (γj , ν𝑗)  ∝ 𝛾𝑛−2 ,      𝐁j < γj < Αj,   𝐵𝑗 =  
vj

d𝑗
,                    (35) 

 

Then    

 

γj = [𝐵𝑗
𝑛−1 + 𝛿(𝐴𝑗

𝑛−1 − 𝐵𝑗
𝑛−1)]

1

𝑛−1,                               (36) 

 

where 𝛿 is sampled from Uniform (0, 1). 
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